
First Order Correlation Attack
on a Geffe Generator

Sarad A Venugopalan

Email: sven250+1 @ aucklanduni.ac.nz

Ciphers

What is it?
An algorithm to encrypt and decrypt information.

Why do we need it?
To keep a secret to yourself

To share a secret with intended recipient(s).

2/26

Who uses it?

Anyone who keeps a secret

Everyday authentication(Email, online banking, SSL, SSH logins)

Confidential Military communication

Who wants to decipher your secret?
Anyone wanting to use or sell VALUABLE information. For example

- Corporate secrets

- Military secrets

- Your secrets

Asymmetric/
Public Key

Symmetric
Key

CRYPTOSYSTEM

RSA El-Gamal Block

Ciphers

Stream

Ciphers

Blowfish RijndaelE0, A5, Geffe

4/26

One Time Pad (OTP)

Plain Text

(length L)

Random Key

(length L)

Cipher Text

(length L)

Encryption

5/26

One Time Pad

Cipher Text

(length L)

Random Key

(length L)

Plain Text

(length L)

Decryption

6/26

One Time Pad

Proven to be unbreakable by Shannon if the keys are random and non-
repeating

Key distribution and management are big dampeners to its use

Emphasis is to ‘fix’ management and the result is STREAM CIPHERS

7/26

Properties of Exclusive OR(XOR)

XOR is a linear operator

XOR is bitwise addition modulo 2. (a + b) modulo 2

XOR is symmetric. If a XOR b =c, then a XOR C =b

8/26

50% of the output bits are 0’s and 50 % of O/P bits are 1’s

011
101
110
000

A XOR BBA

What values of A and B gave O/P bit 0? We can guess with a 50% probability

What values of A and B gave O/P bit 1? We can guess with a 50% probability

9/26

Properties of bitwise AND

111
001
010
000

A AND BBA

What values of A and B gave O/P bit 0? We can guess with a 33.33% probability!

What values of A and B gave O/P bit 1? We can guess with a 100% probability!

We are at an advantage to correctly guess parts of the input given the output

10/26

Properties of bitwise OR

111
101
110
000

A OR BBA

What values of A and B gave O/P bit 0? We can guess with a 100% probability!

What values of A and B gave O/P bit 1? We can guess with a 33.33% probability!

11/26

Synchronous Stream Cipher

Plain Text

(length L)

Pseudo Random Key

(length L)

Cipher Text

(length L)

Encryption

Stream ciphers are usually much faster than block ciphers
rendering it attractive

12/26

Synchronous Stream Cipher

Cipher Text

(length L)

Pseudo Random Key

(length L)

Plain Text

(length L)

Decryption

13/26

Pseudo Random Key

The generated key exhibit statistical randomness but is computed
by a deterministic process.

A Linear Feedback Shift Register (LFSR) is a common building
block in generating a Pseudo random Key.

14/26

0 0 0 1

Output1 2 3 4

0001=> 1

1000=>8

1100=>12

1110=>14

1111=>15

0111=>7

1011=>11

0101=>5

1010=>10

1101=>13

0110=>6

0011=>3

1001=>9

0100=>4

0010=>2

Primitive Polynomial: x4 + x + 1

Choosing a Primitive Polynomial gives the LFSR a
maximum period or 2poly_degree -1

Linear Feedback Shift Register

Geffe Generator

A Synchronous stream cipher with 3 LFSR’s

A non-linear Boolean function F combines the three registers to provide
the generator output

The symmetric key is the secret initial loading of each of the 3 LFSR’s

I.e. 3.(32) = 96 bit key.

Boolean Function F

F(x1,x2,x3) = (x1 AND x2) XOR (NOT x1 AND x3)

x1 = LFSR 1 O/P bit

x2 = LFSR 2 O/P bit

x3 = LFSR 3 O/P bit
16/26

Truth Table for non-linear function F

1111
1011
0101
0001
1110
0010
1100
0000

F(x1,x2,x3)x3x2x1

6 of 8 bits(75%) of x3 (from LFSR 3) matches with F, the O/P of the Geffe Generator

18/26

First Order Correlation Attack

Step 1: Find Known PlainText

Known Plaintext attack

We assume that we know a few blocks of known plaintext and their
corresponding ciphertext.

This is a reasonable assumption since WebPages may start with a <html>
header or Network Protocols have a standard header.

Step 2: Recover available parts of the KeyStream F

With known plaintext p1,p2,…pn and ciphertext c1,c2,…,cn, recover keystream

F(x1i,x2i,x3i) = ci XOR pi

19/26

Step 3: Bruteforce LFSR 3

We know that when we ‘hit’ the right key for LFSR 3, 75% of its bits will match
with the keystream F.

For all the incorrect keys of LFSR 3 brute-forced, we except only half(50%) of
its bits to match with keystream F.

There are still a few false positive keys that would match 75% of the bits of
keystream F. To eliminate them, use more keystream bits F if available.

Step 4: Bruteforce LFSR 2

From the Truth table for function F, we note that 6 of 8(75%) bits of LFSR 2
match with the keystream F.

By a similar argument from Step 3, we brute-force LFSR 2 to get the correct
LFSR 2 key.

20/26

Step 5: Bruteforce LFSR 1

For entire LFSR 1 keyspace 1 to 232-1 and recovered LFSR 2 and LFSR 3 keys, compute

BEGIN FOR

BrutStrm=(LFSR1_32bit AND LFSR2_32bit) XOR (NOT LFSR1_32bit AND LFSR3_32bit)

If(keystream_recovered_from_known_plaintext == BrutStrm)

Print(Probable LFSR 1 key = LFSR1_iteration_index)
END FOR

As a rule of the thumb, the greater the known plaintext available, fewer the false positive

on the LFSR_1 key.

21/26

Time Complexity of the attack

The time complexity of the correlation attack on the Geffe Generator is
reduced to that of bruteforcing 3 individual 32-bit LFSR’s from a whopping
O(296).

The time complexity of the attack is thus O(232).

22/26

Demonstration

23/26

Thank you!

