 Secure E-Banking

Introduction to Network Programming

1.1. Need to network programming:
A computer can be a stand-alone entity or two or more computers can be connected to form a network. When a stand-alone system requires a large amount of resources to perform a specified fast, it became practically infusible to meet the resource requirements. This realization brought about the users willingness to share information and resources and resulted in the connection of computers as a network.

1. 2. Layering:

It is possible to communicate between computers by setting up a set of rules for communication. This can be done by writing a separate protocol for each rule or to bundle up all the rules as a single monolithic system.

 It is however seen that writing a separate protocol for each rule is robust compared to a monolithic system.

1.3. OSI Model:

Open system inter connection (OSI), model is a layering standard specified by the international standards organization (ISO). It is a seven-layer model as below.

Application

Presentation

Session

Transport

Network

Data link

Physical

Layer 1: Physical

Layer I correspond to the basic network hardware and also gives detailed specification of LAN hardware (IEEE 802. * standards).

Layer 2: Data link

Layer 2 protocol specifies how to organize data into frames and how to transmit frames over a network.

Layer 3: Network

Layer 3 protocols specify how addresses are assigned and forwarded from one end of the network to another.

Layer 4: Transport
Layer 4 protocols specify how to handle details of reliable transfer. Eg: TCP (Transmission Control Protocol)

Layer 5: Session

Layer 5 protocol specifies how to handle connection or communication session with a remote system (e.g. Remote login through TELNET). Specifications for security details such as authentication using password belong to layer 5.

Layer 6: Presentation

Layer 6 protocol specifies how to represent data. Such protocols are needed because different brands of computers use different internal representation for integers and characters.

Layer 7: Application

Each layer 7 protocol specifies how one particular application uses a network. Eg. The specification for an application to send files from one computer to another belongs to layer 7. The protocol specifies the details of how an application program on one machine makes a request and how the application on the other machine responds.

1.4. Four Layer Model:
The top three layers of the OSI model – the session, presentation and application layer are combined in the 4 layer model and are called the process layer.

 Process Layer protocol

 Transport Layer Protocol

 Network Layer Protocol

Data Link Layer Protocol

 (Physical Connection)

1.5. Working of Layered software:

Each layer o f protocol software solves one part of the communication problem, to do so software in a given layer of the sending computer adds information to the outgoing data and the software in the same layer of incoming data on the receiving computer uses the additional information to process the incoming data. Eg: if two computers have agreed on a frame format that includes a checksum, software on the data link layer on the two machines perform the checksum computation. Whenever an output going frame arrives at the data link layer of the sending computer, software adds a checksum before transmitting the frame over the network. Whenever an incoming frame arrives at the data link software on the receiving computer, the software verifies and removes the checksum before passing it to the network layer.

1.6. Scientific basic of layering:
The significance of layering arises from a straightforward scientific principle known as layering principle:

Layer N software on the destination computer must receive the exact message sent by layer N on the sending computer. In other words, whatever transformation a protocol applies before sending a frame must be completely reversed when the frame is received.

1.7. Client – server Model:
The standard model for network application is the client-server model. A server is a process that is waiting to be contacted by client process so that the server can serve the client.

A typical client-server communication is as follows.

· . The server process is started on some computer system. It initializes itself, them goes to sleep waiting for a client process to contact it requesting a service.

· The client process is started, either on the same or different computer. The client process sends a request to the server requesting service of some form.

2. Process can be classified as in an interactive process or concurrent process. In an iterative process, the services are provided one after the other, i.e. in an iterative fashion. In a concurrent process, the requests by the clients are handled concurrently. Concurrent processes generally increases the efficiency of the server when multiple clients make requests to the server at the same time.

1.8. TCP protocol
TCP services are obtained by having both sender and receiver creates end points called sockets. Each socket has a socket number (address) consisting of the IP address of the host and a 16 bit number local to that host, called a port. To obtain a TCP service, a connection must be established explicit between a socket on the source machine and a socket on the destination machine.

All TCP connections are full duplex and point to point. A TCP connection is a byte stream and not a message stream. TCP doesn’t support multicasting as broad casting.

The TCP segment begins with a fixed format 20-byte header. The fixed header may be followed by header options. Segments without data are legal and are commonly used for acknowledgement and control messages

 32 bit

Source Port
Destination Port

Sequence Number

Acknowledgement Number

TCP Header length

URG
ACK
PSH
PST
SYN
FIN
Window size

 Check sum Urgent Pointer

Options (0 or more 32 bit words)

Data (Optional)

TCP Header

The source and destination ports identify the local end points of the connection. A port plus its host IP address forms a 48 bit unique TSAP. The sequence number and acknowledgement number fields perform their usual function. The latter specifies the next byte expected, not the last byte correctly receives. The TCP header lengths tell how many 32-bit words are contained in the TCP header.

Next comes a 6-bit field that is not used. Then comes six, one bit plugs. URG is set to one if the urgent pointer is in use. The ACK bit is set to one of indicate the acknowledgement number is valid. The PSH bit indicates pushed data. The receiver is requested to deliver the data to the application upon arrival and not buffer it until a full buffer is received. The RST bit is used to rest a connection that has become confused due to a host crash or some other reason. The SYN bit is used to establish connections. The FIN bit is used to release a connection. It specifies that the sender has no more data to transmit.

Flow control in TCP is handled using a variable size-sliding window. The window field tells how many bytes may be sent starting at the byte acknowledgement. Checksum is used to check the header and data for errors. The option field is designed to provide a way to provide extra facilities not covered in the basic header.

1.9. The IP protocol:

The Internet protocol (IP) is a network layer protocol. Its function is to provide best effort delivery of datagrams from source to destination, without regard that the machine are on the same network of different network, without regard that the machine are on the same network or a different network. An IP datagram consists of a header part and a text part. The header has 20 byte fixed part and variable length text part. It is transferred in big endian format.

0 4 8 16 19 24 31

Version IHL Type of service Total length

 Identification Flags Fragment offset

Time to live Protocol Header checksum

Source IP address

Destination IP address

Options (0 or more words)

The version field keeps track of which version of the protocol the datagram belongs to the including the version in each datagram. By including the version in each datagram, it is possible to identify various version such as IPV4 (Internet Protocol Version 4) which is the most commonly used version of IP presently and IPV6, the next generation of IP that are to be used. Sine the header lengthen is not a constant a field in the header IHL, is provided to tell how long the header is, in 32 bit words. The minimum value is 5, which applies when no options are present. The maximum value of this 4-bit field is 15, which limits the header to 60 bytes and thus the option field to 40 bytes. The type service (TOS) field allows the host to tell the subnet what kind of service it wants. The total length includes everything in the data gram both header and data. The maximum length is 65535 bytes. The identification field is needed to allow the destination host to determine which datagram a newly arrived fragment belongs to .All the fragments of a datagram consists of an identification value. Next comes and unused bit and 2, one bit flags. DF stands for don’t fragment. By marking the datagram with the DF bit, the sender knows it will arrive in one piece. MF stands for more fragments. All fragments except the last one has this bit set. It is needed to know when all the fragments of the datagram has arrived. Since 13 bits are provided there can be a maximum of 9192 fragments for a datagram.

The fragment offset tells where in the current datagram this fragment belongs. All fragment excepts the last fragment should be a multiple of 8 bytes. The time to live field is counter used to limit packet lifetime to a max of 255 hops. When the network layer has assembled the complete packet, the protocol field tells it which transport process it must give it to.

Eg. TCP, UDP and some others. The header checksum checks the correctness of the header and its integrity. The source and destination IP’s are each 32 bit addresses of the source host and the destination host. The option field is provided to allow subsequent versions of the protocol to include information not present in the original design.

UNIX facilities of Network Programming:

· The UNIX 1/0 paradigm and Network 1/0.
Unix was originally designed as a time-sharing system for single processor computers. An application program interacts with the system by making system calls. They take arguments and return one or more values.

 Unix I/O primitives follow a paradigm referred as open-read-write-close before a user can perform any I/O operations, it calls open to specify a file as a device to be used to obtain permission. The call to open, results a small integer file descriptor that the process uses when programming I/O operations on the device. Once an object has been opened, the user makes one or more calls to read or write, to transfer data, into the user process, write transfers date from the user process to device as a file. After the completion of all transfer operations, user process calls close to inform the operating system that it has finished using the object.

Originally Unix designers cast all I/O operations in the open-read-write-close- paradigm as described above. An earlier implementation of TCP/IP under Unix also used the open-read-write-close paradigm with special file called /dev/tcp.

 The group adding network protocols to BSD UNIX decided that because network protocols are more complex than conventional I/O facilities. These were a need for the protocol interface to allow programmers to create both server codes that awaits connection passively as well as client code that allow connections actively.
Further more application programs sending data grams may wish to specify the destination address along with each data gram instead of binding destination all the time they call open. To handle all these UNIX opens read-write-close-paradigm was abandoned and several new operating system calls as well as library routines were introduced adding network protocols to Unix increased the complexity of the I/O interface substantially.

Further complexity arises in the Unix protocol interface because the designer attempted to build a general mechanism accommodate many protocol. e.g. the generality makes it possible for the operating system to include software for other protocol as well as TCP/IP and allow the application program to use one or more of them at a time.

As a consequence the application program cannot supply a 32- bit address and expect the operating system to interpret it correctly. The application must explicitly specifies that the 32-bit number represent an IP addresses.
· Socket Abstraction:

The basis for network I/O in the BSD UNIX centers on the abstraction known as socket. A socket can be looked upon as a UNIX file access mechanism that provides an end point for communication. As file access application program requires the operating system to create a socket when needed. The system returns a small integer that the application program uses to reference the nearly created socket. The chief difference between file descriptors and socket descriptors is that the operating system binds a file descriptor to specify file or device, when the application calls open but it can create socket without binding them to a specific destination address .the application can chooses to supply a destination each time it uses the socket (e.g. when sending data gram) or it can choose to destination address to the socket and avoid specifying the destination repeatedly.

Socket performs exactly like Unix file or device so they can be used with the traditional read and write operations e.g. an application program creates a socket and creates a TCP connection from the socket to a foreign destination; the program can use write to send a stream of data across the connection to make it possible to use primitives like read and write for both file and socket descriptor .the operating system allocates socket descriptor and file descriptor from the same set of integers and make sure that if a given integer is allocated as a file descriptor, it will not be allocated as a socket descriptor. Unix also provides send () and recv () socket calls which similar to read () and write () but provides greatest control over data transmission.

· Socket programming in C on Unix:
Types of internet sockets:

There are two types of Internet sockets – stream socket stream and datagram. socket, referred to as “SOCK-STREAM” and ‘SOCK-DGRAM’ respectively. Datagram sockets are connection less sockets and stream sockets are connection-oriented sockets. Socket streams are usually reliable tow-way-connected communication streams. Information is received in the same order they are sent stream. Stream sockets use TCP to make sure that the date arrives in sequence and correctly. Datagram sockets usually use UDP or IP. The pockets may arrive in order or out of order.

Socket address:

Many of the BSD networking system calls requires a pointer to a socket address structure as an argument. The definition of this structure is in <sys/socket.h>

struct sockaddr

{

u-short sa-family; /* address family AF_XXX value, unsigned short */

char sa-data[14]; /* upto 14 bytes of protocol specific address*/

};

sa-family can be a variety of things like current families which include TCP/IP internet AF_INET/PF_INET, XEROX corporation ,PUP Internet (PF_PUP), Apple computer incorporated Apple Talk network (PF_APPLETALK) and UNIX file system (PF_UNIX) and many others. PF is for protocol family. Sa_data contain a destination address and port number for the socket.

For the Internet family, the following structures is defined in <netinet/in.h>

struct in_addr

{

 u_long s_addr; /* 32 bit hostornetid in big endian*/

};

struct sockaddr_in

{

short sin_family; /*AF_INET*/

u_short sin_part; /*16 bit port no*/

struct in_adr sin_addr;

char sin_zero[8]; /*unused, padding*/

};

Elementary socket system calls:

Result = (int family, int type, int protocol)

1.1.1 The family is one of

AF_UNIX unix/internal protocol

AF_INET internet protocols

AF_NS Xerox NS protocols

AF_IMPLINK IM.P link layer

AF_prefix stands for “address family”. PF stands for “protocol family”. They are equivalent.

The socket type is one of the following

SOCK_STREM stream socket

SOCK_DGRAM datagram socket

SOCK_RAW raw socket

SOCK_SEQPACKET sequence packet socket

SOCK_RDM reliable delivery message socket (unimplemented)

The protocol argument is typically set to zero for most applications but there are specialized applications that specify a protocol value. The IPPROTO_XXX constants are defined in <netinet/in.h> and NSPROTO_XXX constant are defined in the file <net ns/ns.h>

Eg :

1PROTO_UDP

1PROTO_KMP

IP PROTO_TCP

NSPROTO_SPP

The socket system call returns a small integer value simlar to n file descriptor called socket descriptor or sockfd.

Socket pair system call :

This system call is implemented only for the unix domain

include <sys/types.h>

#include<sys/socket.h>

int socketpair (int family, int type, int protocol, int sockvec[2]); this returns two socket descriptors sockvec[0] and sockvec[1] which holds the two socket descriptors. It is bidirectional and connection oriented.

The two allowable versions are

int rc, sock fd[2],

Rc=socketpair (AF_UNIX, SOCK_STREAM,0,sockfd);

Or

Rc=socketpair (AF_UNIX,SOCK_DGRAM,0,sockfd);

Find system call:
The find system call assigns a name to an unnamed socket.

#include<sys/type.h>

#include<sys/socket.h>

int bind(int sockfd, struct sockaddr *myaddr, int addrlen);

The second argument is a pointer to the protocol specific address and the third argument is the size of this address structure.

Connect system call:

A client process connects a socket descriptor following the ‘socket’ system call to establish a connection with the server.

#include<sys/types.h>

#include<sys/socket.h>

int connect (int sockfd, struct sockaddr *servaddr, int addrlen);

 For connection oriented protocols like TCP, the connect system call results in the actual establishment of call between the local system and the foreign system. In these cases, the connect system call does not return unitl the connection is established or an error is returned to the process. TCP uses a 3-way handshake to set up the connection.

A connectionless client can also use the connect system call there, the function of the connect system call is to store the serv address specified by the process, sto that the system knows where to send any future data that the process writes to the sockfd descriptor. In this case, the connect system call returns immediately and there is no actual exchange of messages between the local system and the foreign system.

Listen system call :

This system call is used by a connection-oriented server to indicate that it is willing to receive connections.

 int listen (int sockfd, int backlog);

It is usually executed after both the socket and find system calls and immediately before the accept system call. The backlog argument specifies how many connections requests can be queued by the system while it waits for the server to exeute the accept system call.

Accept system call:

After a connection oriented server executes the listen system call describe in ‘listen’, an actual connection from some client process is waited for by having the server to execute the accept system call.

include<sys/types.h>

#include<sys/socket.h>

int accept (int sockfd, struct sockaddr *peer, int *addrlen);

accept takes the first connection request on the queue and creates another socket with the same properties of sockfd. If there are no connections pending, this call blocks the caller until one arrives.

The peer and addrlen arguments are used to return the address of the connected peer process (client). On return addrlen, contains the actual number of bytes that the systems call stores in the peer argument.

Network byte order conversion routines:

#include<sys/tyepr.h>

#include<netinet/n.h>

u_long htonl (u-long hostlong);

u_short htons (u_short hostshort);

u_long ntohl (u_long netlong);

u_short ntohs (u_short netshort);

htonl (host to network order long integer

htons (host to network short integer

ntohl (network to host long integer

ntohs (network to host short integer.

Send, sendto recv & recvfrm system calls:
They are similar to read and write but additional arguments are required.

include <sys/ types.h>

include <sys/ socket.h>

int send (int sockfd, char *buff, int n bytes, int flags);

int sendlo (int sockfd, char * buff, int n bytes, int flags, struct sockaddr * to, int addrlen);

int recv (int sockfd, char *buff, int nbytes, int flag, struct sockaddr *from, int * addrlen);

int recv from (int sockfd, char *buff, int nbytes, int flag, struct sockaddr * from, int *addrlen);

The flag argument is either zero or is formed by BITWISE OR of one of the following constants.

MSG_ OOB Send and Receive out of band data

MSG_ PEEK Peek at incoming data or message

MSG_DONTROUTE Bypass routing (send or send to)

The MSG _ PEEK flag lets the caller to look at the data that is available to be rend without having the system discard the data after recv or Recv from returns.

Close System Call

The normal unix close system call is used to close a socket.

int close (int fd);

Normally the system return from the close immediately but the kernel still tries to send the data that is queued up.

SO – LINGER Socket option allows the process to specify these

a) Close should try to send any queued data.

b) Any data queued should be flushed.

Message passing from client to server

Server.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <errno.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <sys/wait.h>

#include <signal.h>

#define MYPORT 3490 // the port users will be connecting to

#define BACKLOG 10 // how many pending connections queue will hold

 void sigchld_handler(int s)

 {

 while(wait(NULL) > 0);

 }

 int main(void)

 {

 int sockfd, new_fd; // listen on sock_fd, new connection on new_fd

 struct sockaddr_in my_addr; // my address information

 struct sockaddr_in their_addr; // connector's address information

 int sin_size;

 struct sigaction sa;

 int yes=1;

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1)

{

 perror("socket");

 exit(1);

 }

 if (setsockopt(sockfd,SOL_SOCKET,SO_REUSEADDR,&yes,sizeof(int)) == -1) {

 perror("setsockopt");

 exit(1);

 }

 my_addr.sin_family = AF_INET; // host byte order

 my_addr.sin_port = htons(MYPORT); // short, network byte order

 my_addr.sin_addr.s_addr = INADDR_ANY; // automatically fill with my IP

 memset(&(my_addr.sin_zero), '\0', 8); // zero the rest of the struct

 if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr))

 == -1) {

 perror("bind");

 exit(1);

 }

 if (listen(sockfd, BACKLOG) == -1) {

 perror("listen");

 exit(1);

 }

 sa.sa_handler = sigchld_handler; // reap all dead processes

 sigemptyset(&sa.sa_mask);

 sa.sa_flags = SA_RESTART;

 if (sigaction(SIGCHLD, &sa, NULL) == -1) {

 perror("sigaction");

 exit(1);

 }

 while(1) { // main accept() loop

 sin_size = sizeof(struct sockaddr_in);

 if ((new_fd = accept(sockfd, (struct sockaddr *)&their_addr,

 &sin_size)) == -1) {

 perror("accept");

 continue;

 }

 printf("server: got connection from %s\n",

 inet_ntoa(their_addr.sin_addr));

 if (!fork()) { // this is the child process

 close(sockfd); // child doesn't need the listener

 if (send(new_fd, "Hello, world!\n", 14, 0) == -1)

 perror("send");

 close(new_fd);

 exit(0);

 }

 close(new_fd); // parent doesn't need this

 }

 return 0;

 }

Client.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <errno.h>

#include <string.h>

#include <netdb.h>

#include <sys/types.h>

#include <netinet/in.h>

#include <sys/socket.h>

#define PORT 3490 // the port client will be connecting to

#define MAXDATASIZE 100 // max number of bytes we can get at once

 int main(int argc, char *argv[])

 {

 int sockfd, numbytes;

 char buf[MAXDATASIZE];

 struct hostent *he;

 struct sockaddr_in their_addr; // connector's address information

 if (argc != 2) {

 fprintf(stderr,"usage: client hostname\n");

 exit(1);

 }

 if ((he=gethostbyname(argv[1])) == NULL) { // get the host info

 perror("gethostbyname");

 exit(1);

 }

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

 perror("socket");

 exit(1);

 }

 their_addr.sin_family = AF_INET; // host byte order

 their_addr.sin_port = htons(PORT); // short, network byte order

 their_addr.sin_addr = *((struct in_addr *)he->h_addr);

 memset(&(their_addr.sin_zero), '\0', 8); // zero the rest of the struct

 if (connect(sockfd, (struct sockaddr *)&their_addr,

 sizeof(struct sockaddr)) == -1) {

 perror("connect");

 exit(1);

 }

 if ((numbytes=recv(sockfd, buf, MAXDATASIZE-1, 0)) == -1) {

 perror("recv");

 exit(1);

 }

 buf[numbytes] = '\0';

 printf("Received: %s",buf);

 close(sockfd);

 return 0;

 }

Data Link

Data Link

Network

Transport

Network

Transport

Process

Process

 Dept. of CSE, SIT 20

