 Secure E-Banking

Software Design Specifications
The Software Design Specification for the project titled Secure E-banking is organized as follows.

Table of contents

4.1. Introduction

4.2. System Overview

4.3. Design Considerations

· Assumptions and Dependencies

· General Constrains

· Goals and Guidelines

4.1. Development Methods

4.4. Architectural Strategies

4.5. System Architecture

4.1. Subsystem Architecture

4.6. Policies and Tactics

4.7. Detailed System Design

4.1. Detailed Subsystem Design

4.8. Glossary

4.1. Introduction

4.1. Purpose
The purpose of this Software Design Specification document is to provide a clear and precise set of guidelines for developing software, in particular the design issues involved in securing electronic bank transactions.

4.2. Scope

This design document is intended for banking applications such as Secure E-banking .

4.3. Intended Audience
This document is provided for programmers that join the project, thereby acting as a quick and complete guide for implementing the project.

4.4. Prerequisite documents

Makoto Matsumoto and Takuji Nishimura, Mersenne Twister: A 623 dimensional equi-distributed uniform pseudo random number generator.

Bruce Schneier, Applied Cryptography, Wiley Publications, Second edition, 2001

Richard Stevens, Introduction to Unix Programming, PHI Publications

4.5. Abbreviations

Pseudo Random Number Generator (PRNG): An algorithm that generates Pseudo Random Numbers.

Cipher Block Chain with Checksum (CBCC): A chaining mode that prevents the plain text to encrypt to the same cipher text while using the same encryption key.

Initialization Vector (IV): An initial pseudo random number used for chaining.
Key Distribution Center (KDC): A trusted authority who distributes encryption keys across banks (in our context).

Redundant Array of Inexpensive Disks (RAID): Various disk storage mechanisms for cost effective and efficient data storage and retrieval.

Transmission Control Protocol (TCP): A reliable, full duplex communication protocol that resides on the transport layer of the seven-layer Open System Interconnection model.
4.2. System Overview

Our system is designed to provide maximum security to the banking system keeping the user interface as simple as possible. We assume minimal cryptographic knowledge on part of the system operator.

 We use a standard, public domain, symmetric key encryption namely Blowfish [2] for encrypting and decrypting data between the banks. In order to prevent replay attacks, we use the encryption algorithm in CBCC mode [2]. The Initialization Vector (IV) is generated using a Pseudo Random number Generator (PRNG) namely Mersenne Twister [1].

4.3. Design Consideration
· The product developed is easily transferable

· The product developed is simple and easy to use

· The product developed is evolutionary

· The modules developed are loosely coupled and easily reusable

· The product developed is open source

4.3.1. Assumptions and Dependencies
· We assume that the KDC distributes the private key across the communicating banks. The entire design is dependent on the existence of a trusted KDC for symmetric key distribution.

· The code is to be compiled using a gcc compiler on a UNIX machine

· The end user or the operator is assumed to have minimal computer knowledge to operate the software.

4.3.2. General Constrains

· The executable of the program necessarily need to run on a UNIX machine. If the end user is on a Windows machine, a telnet session is to be established with the UNIX machine using a proper virtual emulator.

· The number of concurrent requests the server can process is limited to the resourcefulness of the server. Resource allocation is to be suitably done based on the load on the server.

· As banking data is of significant importance to the adversary, the UNIX server is to be run behind a secure firewall.

· Blowfish is fast and encrypts at a rate of 26 clock cycles per byte on a 32-bit microprocessor and runs under 5K of memory. Blowfish provides variable security with a maximum key length of 448 bits.
· Mersenne Twister is very fast and takes 10.18 seconds to produce one million pseudo random numbers on an optimized one GHz machine. Mersenne Twister uses a very small memory work area of 624 bytes.
· Network communication is done using Berkley Sockets. If the transactions are on an Intranet, the AF_UNIX address family is to be used. If the transactions are across the Internet, the AF_INET address family is to be used.
· Once the product is developed, it is to be Alpha tested using randomly generated test vectors. The software is to be then to be Beta tested across a set of trusted users.
4.3.3. Goals and Guidelines
· Irrespective of the fact that excellent time and space efficient algorithms are being used, proper emphasis is to be given to a simple, user friendly and catchy front end.

4.3.4. Development Methods

The algorithm of MT is as described in [1]. Blowfish is a symmetric key, block cipher encryption algorithm that works on the principle of Feistel Networks. The algorithm is as described in Chapter 14, Section 14.3 as in [2].
4.4. Architectural Strategies

· The criteria for choice of programming language are –simplicity in programming on part of the programmer, time and space efficiency of the executable, availability, popularity, portability and cost efficiency. The gcc complier meets all the above mentioned criterion. Thus, we use the same.

· Future enhancements include implementing the KDC using Public key Infrastructure.

· Error detection in the packets are possible due to a special variation of checksum used in CBC mode.

· No special routines for error correction are implemented. We rely on TCP to correctly retransmit packets when dropped by the intermediate network.
· Since the modules have negligible memory requirements (under 6K), no memory management policies are to be implemented in the program.

· The bank transactions are stored as normal binary files for portability. A higher RAID level may be used for efficient data storage and retrieval.

· The UNIX server is to be a concurrent server, which accepts at least ten simultaneous connections. The child processes are to be created using the fork () function call.

· Communication between the client and the server is to be via a stream socket (TCP)
4.5. System Architecture

A high level abstraction of the various subsystems presented as logical blocks are shown below-

 Plain Text Cipher Text

 Key

 Component 1: Encryption

 Input Seed IV

Component 2: PRNG

 IV Chained Cipher Text

 Cipher Text

Component 3: Chaining

 Chained Cipher Text Chained Cipher Text

Component 4: Socket

 Cipher Text Plain Text

 Key

Component 5: Decryption

Component 1- Encryption using symmetric key cryptosystem, namely Blowfish.

Component 2- Pseudo Random Number Generator, namely Mersenne Twister.

Component 3- Chaining using Cipher Block Chain.

Component 4- Socket program, using Berkley Sockets.

Component 5- Decryption using symmetric key cryptosystem, namely Blowfish.

The interface between the various modules is as shown below-

4.5.1. Subsystem Architecture:
Algorithm MT
Take an array of n words as working area, as follows. Let x[0:n-1] be an array of n unsigned integers if word size, i be an integer and u,ll,a be unsigned constant integers of word size.

Step 1:

i<--0

x[0],x[1],...x[n-1]<---"Any non zero initial values"

Step 2:

y<---(x[i] AND u) OR (x[(i+1)mod n)] AND ll);(computing

(X(k upper)|(X(k+1 lower)))

Step 3:

x[i]<---x[(i+m) mod n] XOR (y>>1)

XOR {0 if the least significant bit of y=0; (multiplying A)

XOR (a if the least significant bit of y=1; (multiplying A)

Step 4:

Calculate x[i]T

y<---x[i]

y<---y XOR (y>>u) ;(Shift Right y by u bits and add to y)

y<---y XOR ((y<<s) AND b)

y<---y XOR ((y<<t) AND c)

y<---y XOR ((y>>l)

output y

Step 5:

i<--(i+1)mod n

Step 6: Go to Step 2

Algorithm Blowfish
Blowfish is a symmetric key, block cipher encryption algorithm that works on the principle of Feistel Networks. The algorithm is as described in Chapter 14, Section 14.3 as in [2].

4.6. Policies and Tactics

· We use the gcc compiler for reasons mentioned in section 4.

· Since our project, duration is adequate to write complete modules we make use of no libraries.

· Coding is to be done in such a manner that it is easily intelligible to a third part using the code. In order to make this possible, we use comments where ever necessary. The syntax and grammar of the language are fixed. We try avoiding ambiguities in code by keeping it simple. The nomenclature of variables should signify their purpose in the real world.

· The choice of the algorithm is always based on an optimal space-time complexity trade off. When the algorithm is specifically for encryption, we look at the literary survey of cryptanalysis of the same by eminent mathematicians over a large period.

· Testing may be done by a suitable test tool. Alpha testing is to be done by observing the output for random input data. If feasible, Beta testing is also suggested.

· Interface design as earlier mentioned in this document is to be simple, precise and self-explanatory. Communications are to be done through various available socket (Application Program Interface) API’s.

· All loosely coupled modules are to be incorporated as separate files.

4.7. Detailed System Design

Classification

Component 1- Encryption using symmetric key cryptosystem, namely Blowfish. The functions involved in this module are namely-

· Sub key generation

· S-box and P-Array initialization

· Feeding two 32-bit plain text blocks to the encryption function

· The encryption routine itself.

Component 2- Pseudo Random Number Generator, namely Mersenne Twister. The functions involved are

· Seed initialization based on user input

· Random number generator which returns the random number

Component 3- Chaining using Cipher Block Chain.

· Since the process is tightly coupled with the encryption function, chaining is incorporated in the encryption function of component 1.

Component 4- Socket program, using Berkley Sockets.

· We use API’s to establish a stream socket between the client and the server

· A file handling routine is required to buffer the data stream and to transmit it to the receiver.

Component 5- Decryption using symmetric key cryptosystem, namely Blowfish. The functions involved in this module are namely-

· Sub key generation

· S-box and P-Array initialization

· Feeding two 32-bit plain text blocks to the decryption function

· The decryption routine itself.
· Since unchaining the process is tightly coupled with the decryption function, unchaining is incorporated in the decryption function of component 5.

Definitions

· Initialization Vector (IV): A randomly generated string used in chaining the cipher text.

· Pseudo Random Number Generator (PRNG): Algorithmically determined sequence of pseudo random numbers with a fixed period.

· Cipher Block Chain with Checksum (CBCC): A chaining mode that prevents the plain text to encrypt to the same cipher text while using the same encryption key.

· Encryption: The process of obscuring plain text with the help of an encryption key there by making the resulting text unintelligible to a third

· Decryption: It is the inverse process of encryption using the decryption key.

Responsibilities

Component 1 is responsible for sub key generation, S-box and P-Array initialization and the feeding of two 32-bit plain text blocks to the encryption function, this process being applied to all the plain text blocks. The main functionality of Component 1 is to obscure the cipher in such a manner that it is ‘hard’ to recover the plain text without the decryption key.
Component 2 is responsible for seed initialization based on user input and random number generation as per user input. By nature of the algorithm, the output generated is pseudo random.

Component 3 is responsible for preventing block replay attacks by nature of the protocol being used.

Component 4 is responsible for efficient, reliable transmission of data stream from client to the server. We use the services of the TCP, to meet our requirements.

Component 5 performs unchaining and an inverse transform over the encryption function to obtain the plain text with the help of the decryption key.
Constrains

· Encryption is fastest on 32 bit microprocessors or above. Older 8-bit or 16-bit microprocessors have a lower encryption and decryption rate.

· Since we encrypt 64 bits at a time, by the birthday paradox, the chained cipher text begins to repeat after 232 blocks.

Interactions

The interactions between the various components are as shown below in topological sort order.

 Component 1

 Component 3 -(Component 4 -(Component 5

 Component 2

Resources

· Blowfish is fast and encrypts at a rate of 26 clock cycles per byte on a 32-bit microprocessor and runs under 5K of memory. Blowfish provides variable security with a maximum key length of 448 bits.
· Mersenne Twister is very fast and takes 10.18 seconds to produce one million pseudo random numbers on an optimized one GHz machine. Mersenne Twister uses a very small memory work area of 624 bytes.
· We make use of normal files to store data.

· We make use of no software libraries

· Race conditions are to be resolved by providing read locks and write locks to the process that reads and writes into shared memory respectively. Dead locks are to be dealt with, using deadlock detection or deadlock resolution algorithms.

Processing

A detailed description of both MT and Blowfish are as described in Section.5.1.

Change of state is as described in the Data Flow Diagrams presented below.

Since we are using well known algorithms in public domain, we simply specify the functionality and relationship between the modules as a Finite State Data Flow Diagram.

Client to Server Data Flow Diagram

q0 is the initial state, this state produces pseudo random numbers which acts as IV for the next stage. The initial stage q0 is a function over x, where x is the seed of the random number generator.

delta(q0, x)= q1 is the transition from initial state q0 to the intermediate state q1, by consuming the symbol x.

q1 is the intermediate state .This state encrypts and chains the cipher text. The state q1 is a function of y, where y={IV, Encryption Key, Plain Text).

delta(q1 , lambda)= q2 . The transition from state q1 to q2 consumes no symbols, since the chained cipher text is simply sent to the receiver via sockets. q2 is the final state.

Server Side Plain text retrieval Data Flow Diagram

Here state q2 is a function over a, where a={IV, Decryption Key, Cipherext)

In stage q2 initially the chaining is removed using the IV and the Ciphertext is decrypted using the decryption key.

delta(q2 ,lambda)= q3. q3 is the final state and gives us the plain text.

4.7.1. Detailed Sub-System Design

Tbe Blowfish encryption algorithm is as shown below. First, we look at the function box ‘F box’.

 13 more iterations

 Blowfish Encryption Algorithm

User Interface

The components are abstracted to the highest possible with the user. The senders view is limited to entering the encryption key. The receivers view involves entering the decryption key. The above process is made easy by providing the user a friendly interface.

 We follow a user centered user interface design. The user interface is designed as to suit the expertise of an intended audience, namely bankers. A simple character based user menu is to be developed to interact with the application. Systematic guidelines on using the application are to be provided in the ‘help menu’.

We develop a user interface management system, which is an intelligent function that accepts the user data, and process the data. Based on the processing a suitable response is generated. Display specification routine specifies how the response is to be displayed on the output device.

4.8. Glossary

· Cipher Block Chain with Checksum (CBCC): A chaining mode that prevents the plain text to encrypt to the same cipher text while using the same encryption key.

· Initialization Vector (IV): An initial pseudo random number used for chaining.

· Key Distribution Center (KDC): A trusted authority who distributes encryption keys across banks (in our context).
· Pseudo Random Number Generator (PRNG): An algorithm that generates Pseudo Random Numbers.

· Redundant Array of Inexpensive Disks (RAID): Various disk storage mechanisms for cost effective and efficient data storage and retrieval.

· Transmission Control Protocol (TCP): A reliable, full duplex communication protocol that resides on the transport layer of the seven-layer Open System Interconnection model.
Encryption

Component 1

PRNG

Chaining

Decryption

Component 2

Component 3

Component 4

Socket

Component 3

Component 5

transition

lambda

IV

q2

q1(y)

q0(x)

q2(a)

q3

lambda

transition

EK

EK

Pi-1

PI+1

Pi

32 Bits

P17

P18

P16

32 Bits

64 Bits

P2

P1

64 Bits

32 Bits

32 Bits

32 Bits

32 Bits

32 Bits

Ci-1

Ci

Ci+1

CBC ENCRYPTION

User

Ci

Ci-1

CI+1

EK

Application command specification

Display Specification

Application

User Interface

Management System

User Interface

CIPHER TEXT

F

F

F

PLAIN TEXT

Function F

32 Bits

32 Bits

32 Bits

S-BOX 1

S-BOX 2

S-BOX 3

S-BOX 4

8 Bits

8 Bits

8 Bits

32 Bits

32 Bits

32 Bits

8 Bits

CBC DECRYPTION

Pi+1

Pi-1

Pi

DK

DK

DK

 Dept. of CSE, SIT 52

